题解 P5050 【【模板】多项式多点求值】

bztMinamoto

2019-02-13 19:52:31

Solution

[传送门](https://www.luogu.org/problemnew/show/P5050) 人傻常数大.jpg 因为求逆的时候没清零结果调了几个小时…… ## 前置芝士 多项式除法,多项式求逆 什么?你不会?左转你谷模板区,包教包会 ## 题解 首先我们要知道一个结论$$f(x_0)\equiv f(x)\pmod{(x-x_0)}$$ 其中$x_0$为一个常量,$f(x_0)$也为一个常量 证明如下,设$f(x)=g(x)(x-x_0)+A$,也就是说$A$是$f(x)$对$(x-x_0)$这个多项式取模之后的结果 因为$(x-x_0)$的最高次项为$1$,所以$A$的最高次项为$0$,也就是说$A$是一个常数,即$f(x)\equiv A\pmod{(x-x_0)}$ 我们把$x_0$代入上式,得$f(x_0)=g(x_0)(x_0-x_0)+A$,同理可得$f(x_0)\equiv A\pmod{(x-x_0)}$ 于是我们知道上式成立 ~~这有毛用啊$O(n\log n)$多项式取模还没我暴力快~~ 乍一看的确没啥卵用,但是考虑取模的过程是否能优化呢? 答案是可以的,我们考虑分治。设当前分治区间为$[l,r]$,令$P_0=\prod_{i=l}^{mid}(x-x_i)$,$P_1=\prod_{i=mid+1}^r (x-x_i)$,当前已经算出了$A\equiv f(x)\pmod{\prod_{i=l}^r(x-x_i)}$,那么只要分别用$A$对$P_0$和$P_1$取模,然后继续递归下去就行了。取模之后$A(x)$的最高次项的次数变为原来的一半,问题规模也就变为原来的一半。继续递归下去就行了 时间复杂度为$O(n\log^2n)$ upd:改了改代码,常数应该会小一点,比方说分治到某个时候暴力秦九韶展开 ```cpp //minamoto #include<bits/stdc++.h> #define R register #define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i) #define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i) #define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v) using namespace std; char buf[1<<21],*p1=buf,*p2=buf; inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;} int read(){ R int res,f=1;R char ch; while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1); for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0'); return res*f; } char sr[1<<21],z[20];int C=-1,Z=0; inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;} void print(R int x){ if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x; while(z[++Z]=x%10+48,x/=10); while(sr[++C]=z[Z],--Z);sr[++C]='\n'; } const int N=(1<<17)+5,P=998244353; inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;} inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;} inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;} int ksm(R int x,R int y){ R int res=1; for(;y;y>>=1,x=mul(x,x))(y&1)?res=mul(res,x):0; return res; } int r[19][N],w[2][N],lg[N],inv[19]; void Pre(){ fp(d,1,17){ fp(i,1,(1<<d)-1)r[d][i]=(r[d][i>>1]>>1)|((i&1)<<(d-1)); lg[1<<d]=d,inv[d]=ksm(1<<d,P-2); } for(R int t=(P-1)>>1,i=1,x,y;i<131072;i<<=1,t>>=1){ x=ksm(3,t),y=ksm(332748118,t),w[0][i]=w[1][i]=1; fp(k,1,i-1) w[1][k+i]=mul(w[1][k+i-1],x), w[0][k+i]=mul(w[0][k+i-1],y); } } int lim,d,n,m; inline void init(R int len){lim=1,d=0;while(lim<len)lim<<=1,++d;} void NTT(int *A,int ty){ fp(i,0,lim-1)if(i<r[d][i])swap(A[i],A[r[d][i]]); for(R int mid=1;mid<lim;mid<<=1) for(R int j=0,t;j<lim;j+=(mid<<1)) fp(k,0,mid-1) A[j+k+mid]=dec(A[j+k],t=mul(w[ty][mid+k],A[j+k+mid])), A[j+k]=add(A[j+k],t); if(!ty)fp(i,0,lim-1)A[i]=mul(A[i],inv[d]); } void Inv(int *a,int *b,int len){ if(len==1)return b[0]=ksm(a[0],P-2),void(); Inv(a,b,len>>1),lim=(len<<1),d=lg[lim]; static int A[N],B[N]; fp(i,0,len-1)A[i]=a[i],B[i]=b[i];fp(i,len,lim-1)A[i]=B[i]=0; NTT(A,1),NTT(B,1); fp(i,0,lim-1)A[i]=mul(A[i],mul(B[i],B[i])); NTT(A,0); fp(i,0,len-1)b[i]=dec(add(b[i],b[i]),A[i]); fp(i,len,lim-1)b[i]=0; } struct node{ node *lc,*rc;vector<int>vec;int deg; void Mod(const int *a,int *r,int n){ static int A[N],B[N],D[N]; int len=1;while(len<=n-deg)len<<=1; fp(i,0,n)A[i]=a[n-i];fp(i,0,deg)B[i]=vec[deg-i]; fp(i,n-deg+1,len-1)B[i]=0; Inv(B,D,len); lim=(len<<1),d=lg[lim]; fp(i,n-deg+1,lim-1)A[i]=D[i]=0; NTT(A,1),NTT(D,1); fp(i,0,lim-1)A[i]=mul(A[i],D[i]); NTT(A,0); reverse(A,A+n-deg+1); init(n+1); fp(i,n-deg+1,lim-1)A[i]=0; fp(i,0,deg)B[i]=vec[i];fp(i,deg+1,lim-1)B[i]=0; NTT(A,1),NTT(B,1); fp(i,0,lim-1)A[i]=mul(A[i],B[i]); NTT(A,0); fp(i,0,deg-1)r[i]=dec(a[i],A[i]); } void Mul(){ static int A[N],B[N];deg=lc->deg+rc->deg,vec.resize(deg+1),init(deg+1); fp(i,0,lc->deg)A[i]=lc->vec[i];fp(i,lc->deg+1,lim-1)A[i]=0; fp(i,0,rc->deg)B[i]=rc->vec[i];fp(i,rc->deg+1,lim-1)B[i]=0; NTT(A,1),NTT(B,1); fp(i,0,lim-1)A[i]=mul(A[i],B[i]); NTT(A,0); fp(i,0,deg)vec[i]=A[i]; } }pool[N],*rt; int A[N],a[N],tot; inline node* newnode(){return &pool[tot++];} void solve(node* &p,int l,int r){ p=newnode(); if(l==r)return p->deg=1,p->vec.resize(2),p->vec[0]=P-a[l],p->vec[1]=1,void(); int mid=(l+r)>>1; solve(p->lc,l,mid),solve(p->rc,mid+1,r); p->Mul(); } int b[25]; void calc(node* p,int l,int r,const int *A){ if(r-l<=512){ fp(i,l,r){ int x=a[i],c1,c2,c3,c4,now=A[r-l]; b[0]=1;fp(j,1,16)b[j]=mul(b[j-1],x); for(R int j=r-l-1;j-15>=0;j-=16){ c1=(1ll*now*b[16]+1ll*A[j]*b[15]+1ll*A[j-1]*b[14]+1ll*A[j-2]*b[13])%P, c2=(1ll*A[j-3]*b[12]+1ll*A[j-4]*b[11]+1ll*A[j-5]*b[10]+1ll*A[j-6]*b[9])%P, c3=(1ll*A[j-7]*b[8]+1ll*A[j-8]*b[7]+1ll*A[j-9]*b[6]+1ll*A[j-10]*b[5])%P, c4=(1ll*A[j-11]*b[4]+1ll*A[j-12]*b[3]+1ll*A[j-13]*b[2]+1ll*A[j-14]*b[1])%P, now=(0ll+c1+c2+c3+c4+A[j-15])%P; } fd(j,(r-l)%16-1,0)now=(1ll*now*x+A[j])%P; print(now); } return; } int mid=(l+r)>>1,b[p->deg+1]; p->lc->Mod(A,b,p->deg-1),calc(p->lc,l,mid,b); p->rc->Mod(A,b,p->deg-1),calc(p->rc,mid+1,r,b); } int main(){ // freopen("testdata.in","r",stdin); n=read(),m=read();if(!m)return 0; Pre(); fp(i,0,n)A[i]=read(); fp(i,1,m)a[i]=read(); solve(rt,1,m); if(n>=m)rt->Mod(A,A,n); calc(rt,1,m,A); return Ot(),0; } ```