题解 P3281 【[SCOI2013]数数 】

_rqy

2017-12-28 08:55:18

Solution

### 注意,本题解当 $L=0$ 的时候可能出错。 --- 看到这题,显然是数位DP。 以下将每个数的“把该数视为一个字符串,列出该字符串的每一个(连续的)子串对应的B进制数的值”简称做该数的权值,记为$q[n]$。 首先要考虑在某个数的后面添加一位数字后,权值会如何改变。 把这个数当成字符串的话,在其后面添加一位,它原来的所有连续子串对其权值的贡献不变,新多出来的权值都是现在的后缀。于是,如果原来的数是$n$,某位添加一个$p$,现在的数是$\overline{np}$,那么有 $q[\overline{np}]=q[n]+\sum_{i=0}^{l[n]} \overline{n[1..i]p}$ 其中$l[n]$是$n$的位数,$n[1..i]$是$n$从低到高第$1$到$i$位组成的数(特别的,我们认为$n[1..0]=0$)。 可以发现$\overline{n[1..i]p}=10\times n[1..i]+p$,所以 $q[\overline{np}]=q[n]+\sum_{i=0}^{l[n]} \overline{n[1..i]p}=q[n]+10\sum_{i=1}^{l[n]} n[1..i]+(l+1)q$ 令$s[n]=\sum_{i=1}^l n[1..i]$为$n$的后缀和,我们就有$q[\overline{np}]=q[n]+s[\overline{np}]$,同时$s[\overline{np}]=10s[n]+(l[n]+1)q$,$l[\overline{np}]=l[n]+1$。当然,这都是在$n\neq0$的前提下的,否则会出现前导零(也可以认为$l[0]=0$,那样就没有问题了)。 于是我们考虑数位DP时维护$\sum s$,$\sum l$,$\sum q$和数的个数。只要注意不要出现前导零的情况就可以了。 代码中,$a,s,ss,sl$分别表示数的个数、$\sum q$,$\sum s$,$\sum l$。第二维是$0/1$分别表示前$i$位等于/小于原数的时候的值。 代码: ```cpp //代码写的丑,不建议分析代码qwq。我自己看着都头疼qwq。 #include <algorithm> #include <cstdio> #include <cstring> typedef long long LL; const int N = 100050; const int mod = 20130427; int n, m, B; int L[N], R[N]; LL SB[N], S[N]; LL a[N][2], s[N][2], ss[N][2], sl[N][2]; int solve(int *p, int l) { memset(a, 0, sizeof a); memset(s, 0, sizeof s); memset(ss, 0, sizeof ss); memset(sl, 0, sizeof sl); a[l][0] = 1; for (int i = l - 1; ~i; --i) { int c = (i == l - 1 ? 0 : B); a[i][0] = a[i + 1][0]; a[i][1] = (c - 1 + a[i + 1][1] * B + a[i + 1][0] * p[i]) % mod; sl[i][0] = sl[i + 1][0] + a[i + 1][0]; sl[i][1] = (c - 1 + sl[i][0] * p[i] + (sl[i + 1][1] + a[i + 1][1]) * B) % mod; ss[i][0] = (ss[i + 1][0] * B + p[i] * sl[i][0]) % mod; ss[i][1] = (S[c] + ss[i + 1][0] * B * p[i] + S[p[i]] * sl[i][0] + ss[i + 1][1] * B % mod * B + S[B] * (sl[i + 1][1] + a[i + 1][1])) % mod; s[i][0] = (s[i + 1][0] + ss[i][0]) % mod; s[i][1] = (s[i + 1][0] * p[i] + s[i + 1][1] * B + ss[i][1]) % mod; } return (s[0][0] + s[0][1]) % mod; } int main() { scanf("%d", &B); SB[0] = 1; for (int i = 0; i < N - 1; ++i) SB[i + 1] = (SB[i] * B + 1) % mod; S[0] = 0; for (int i = 0; i < B; ++i) S[i + 1] = (S[i] + i) % mod; scanf("%d", &n); for (int i = 0; i < n; ++i) scanf("%d", &L[n - i - 1]); for (int i = 0; i < n; ++i) { if (L[i] > 0) { --L[i]; break; } L[i] = B - 1; } if (!L[n - 1]) --n; scanf("%d", &m); for (int i = 0; i < m; ++i) scanf("%d", &R[m - i - 1]); printf("%d\n", (solve(R, m) - solve(L, n) + mod) % mod); return 0; } ```