题解 P3705 【[SDOI2017]新生舞会】

xyz32768

2017-12-03 21:08:13

Solution

由于题目求的是最优配对方案,所以很容易想到建一个二分图后用费用流求解,即建立源点和汇点,由源点向每个男生连一条容量为$1$的边,由每个女生向汇点连一条容量为$1$的边,再从任意一个男生向任意一个女生连一条容量为$1$的边。 再考虑费用分配。这时候主要的问题在于$C=\frac{\sum a}{\sum b}$这个式子中$\sum b$在分母位置,无法简单求和。因此可以利用分数规划的思想去掉分母。先二分答案$ans$。 接下来判断最优解$C$能否大于或等于$ans$。把式子$C=\frac{\sum a}{\sum b}$变形后为$\sum a-C\sum b=0$。这时候就可以推出如果$C\geq ans$,就一定存在一种$\sum a,\sum b$的合法分配方案,使得$\sum a-ans\sum b\geq 0$。此时就可以得出,源点连向男生,以及女生连向源点的边的费用都为$0$,第$i$个男生向第$j$个女生的边的费用为$a_{i,j}-ans*b_{i,j}$。建图完成后,如果**最大费用**最大流大于等于$0$,那么$C\geq ans$。 代码: ```cpp #include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; inline int read() { int res = 0; bool bo = 0; char c; while (((c = getchar()) < '0' || c > '9') && c != '-'); if (c == '-') bo = 1; else res = c - 48; while ((c = getchar()) >= '0' && c <= '9') res = (res << 3) + (res << 1) + (c - 48); return bo ? ~res + 1 : res; } const int L = 105, N = 5e5 + 5; const double eps = 1e-8; int n, a[L][L], b[L][L], ecnt, nxt[N], adj[N], go[N], cap[N], len, que[N], S, T; double cost[N], dis[N], ans; bool vis[N], walk[N]; void add_edge(int u, int v, int w, double x) { nxt[++ecnt] = adj[u]; adj[u] = ecnt; go[ecnt] = v; cap[ecnt] = w; cost[ecnt] = x; nxt[++ecnt] = adj[v]; adj[v] = ecnt; go[ecnt] = u; cap[ecnt] = 0; cost[ecnt] = -x; } bool spfa() { int i; for (i = S; i <= T; i++) dis[i] = -1e20, walk[i] = 0; dis[que[len = 1] = S] = 0; for (i = 1; i <= len; i++) { int u = que[i]; vis[u] = 0; for (int e = adj[u], v; e; e = nxt[e]) if (cap[e] > 0 && dis[u] + cost[e] > dis[v = go[e]]) { dis[v] = dis[u] + cost[e]; if (!vis[v]) vis[que[++len] = v] = 1; } } return dis[T] >= -1e19; } int dfs(int u, int flow) { if (u == T) return ans += dis[T] * flow, flow; int res = 0, delta; walk[u] = 1; for (int e = adj[u], v; e; e = nxt[e]) if (!walk[v = go[e]] && cap[e] > 0 && abs(dis[v] - dis[u] - cost[e]) <= eps) { delta = dfs(v, min(cap[e], flow - res)); if (delta) { cap[e] -= delta; cap[e ^ 1] += delta; res += delta; if (res == flow) break; } } return res; } double mcmf() { ans = 0; while (spfa()) dfs(S, 0x3f3f3f3f); return ans; } bool check(double mid) { int i, j; ecnt = S = 1; T = (n << 1) + 2; for (i = S; i <= T; i++) adj[i] = 0; for (i = 1; i <= n; i++) add_edge(S, i + 1, 1, 0); for (i = n + 2; i < T; i++) add_edge(i, T, 1, 0); for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) add_edge(i + 1, j + n + 1, 1, 1.0 * a[i][j] - 1.0 * b[i][j] * mid); double ap = mcmf(); return abs(ap) <= eps || ap > eps; } int main() { int i, j; n = read(); for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) a[i][j] = read(); for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) b[i][j] = read(); double l = -1e7, r = 1e7; while (abs(r - l) > eps) { double mid = (l + r) / 2; if (check(mid)) l = mid; else r = mid; } printf("%.6lf\n", r); return 0; } ```