Maximum Subrectangle

题意翻译

现在给出一个长度为$N$的$a$数列,一个长度为$M$的$b$数列. 现在需要构造出一个矩阵$c$,其中$c_{i,j}=a_i \times b_j$.再给出一个$x$,请在矩阵中找出一个最大的矩形,使得这个矩形中的所有值的和小于等于$x$.

题目描述

You are given two arrays $ a $ and $ b $ of positive integers, with length $ n $ and $ m $ respectively. Let $ c $ be an $ n \times m $ matrix, where $ c_{i,j} = a_i \cdot b_j $ . You need to find a subrectangle of the matrix $ c $ such that the sum of its elements is at most $ x $ , and its area (the total number of elements) is the largest possible. Formally, you need to find the largest number $ s $ such that it is possible to choose integers $ x_1, x_2, y_1, y_2 $ subject to $ 1 \leq x_1 \leq x_2 \leq n $ , $ 1 \leq y_1 \leq y_2 \leq m $ , $ (x_2 - x_1 + 1) \times (y_2 - y_1 + 1) = s $ , and $ $$ \sum_{i=x_1}^{x_2}{\sum_{j=y_1}^{y_2}{c_{i,j}}} \leq x. $ $$

输入输出格式

输入格式


The first line contains two integers $ n $ and $ m $ ( $ 1 \leq n, m \leq 2000 $ ). The second line contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \leq a_i \leq 2000 $ ). The third line contains $ m $ integers $ b_1, b_2, \ldots, b_m $ ( $ 1 \leq b_i \leq 2000 $ ). The fourth line contains a single integer $ x $ ( $ 1 \leq x \leq 2 \cdot 10^{9} $ ).

输出格式


If it is possible to choose four integers $ x_1, x_2, y_1, y_2 $ such that $ 1 \leq x_1 \leq x_2 \leq n $ , $ 1 \leq y_1 \leq y_2 \leq m $ , and $ \sum_{i=x_1}^{x_2}{\sum_{j=y_1}^{y_2}{c_{i,j}}} \leq x $ , output the largest value of $ (x_2 - x_1 + 1) \times (y_2 - y_1 + 1) $ among all such quadruplets, otherwise output $ 0 $ .

输入输出样例

输入样例 #1

3 3
1 2 3
1 2 3
9

输出样例 #1

4

输入样例 #2

5 1
5 4 2 4 5
2
5

输出样例 #2

1

说明

Matrix from the first sample and the chosen subrectangle (of blue color): ![](https://cdn.luogu.org/upload/vjudge_pic/CF1060C/ea340f2e4123e359048067db39cb97e3a56962fb.png)Matrix from the second sample and the chosen subrectangle (of blue color): ![](https://cdn.luogu.org/upload/vjudge_pic/CF1060C/29ed72ba75c43c8c56e95a795caca1696bad260c.png)