开灯

题目描述

在一条无限长的路上,有一排无限长的路灯,编号为$1,2,3,4,…$。 每一盏灯只有两种可能的状态,开或者关。如果按一下某一盏灯的开关,那么这盏灯的状态将发生改变。如果原来是开,将变成关。如果原来是关,将变成开。 在刚开始的时候,所有的灯都是关的。小明每次可以进行如下的操作: 指定两个数,$a,t$($a$为实数,$t$为正整数)。将编号为$[a],[2 \times a],[3 \times a],…,[t \times a]$的灯的开关各按一次。其中$[k]$表示实数$k$的整数部分。 在小明进行了$n$次操作后,小明突然发现,这个时候只有一盏灯是开的,小明很想知道这盏灯的编号,可是这盏灯离小明太远了,小明看不清编号是多少。 幸好,小明还记得之前的$n$次操作。于是小明找到了你,你能帮他计算出这盏开着的灯的编号吗?

输入输出格式

输入格式


第一行一个正整数$n$,表示$n$次操作。 接下来有$n$行,每行两个数,$a_i,t_i$。其中$a_i$是实数,小数点后一定有$6$位,$t_i$是正整数。

输出格式


仅一个正整数,那盏开着的灯的编号。

输入输出样例

输入样例 #1

3
1.618034 13
2.618034 7
1.000000 21

输出样例 #1

20

说明

记$T=t_1+t_2+t_3+…+t_n$。 对于$30\%$的数据,满足$T \le 1000$ 对于$80\%$的数据,满足$T \le 200000$ 对于$100\%$的数据,满足$T \le 2000000$ 对于$100\%$的数据,满足$n \le 5000,1 \le a_i<1000,1 \le t_i \le T$ 数据保证,在经过$n$次操作后,有且只有一盏灯是开的,不必判错。而且对于所有的 $i$ 来说,$t_i\times a_i$ 的最大值不超过 2000000。