[NOI2015]品酒大会

题目描述

一年一度的“幻影阁夏日品酒大会”隆重开幕了。大会包含品尝和趣味挑战 两个环节,分别向优胜者颁发“首席品酒家”和“首席猎手”两个奖项,吸引了众多品酒师参加。 在大会的晚餐上,调酒师 Rainbow 调制了 $n$ 杯鸡尾酒。这 $n$ 杯鸡尾酒排成一行,其中第 $n$ 杯酒 ($1 ≤ i ≤ n$) 被贴上了一个标签 $s_i$ ,每个标签都是 $26$ 个小写 英文字母之一。设 $str(l, r)$ 表示第 $l$ 杯酒到第 $r$ 杯酒的 $r - l + 1$ 个标签顺次连接构成的字符串。若 $str(p, p_0) = str(q, q_0)$,其中 $1 ≤ p ≤ p_0 ≤ n$, $1 ≤ q ≤ q_0 ≤ n$, $p ≠ q$,$p_0-p+1 = q_0 - q + 1 = r$ ,则称第 $p$ 杯酒与第 $q$ 杯酒是“ $r$ 相似” 的。当然两杯“ $r$ 相似”($r > 1$)的酒同时也是“ $1$ 相似”、“ $2$ 相似”、……、“ $(r - 1)$ 相似”的。特别地,对于任意的 $1 ≤ p ,q ≤ n,p ≠ q$,第 $p$ 杯酒和第 $q$ 杯酒都 是“ $0$ 相似”的。 在品尝环节上,品酒师 Freda 轻松地评定了每一杯酒的美味度,凭借其专业的水准和经验成功夺取了“首席品酒家”的称号,其中第 $i$ 杯酒 ($1 ≤ i ≤ n$) 的 美味度为 $a_i$ 。现在 Rainbow 公布了挑战环节的问题:本次大会调制的鸡尾酒有一个特点,如果把第 $p$ 杯酒与第 $q$ 杯酒调兑在一起,将得到一杯美味度为 $a_p\times a_q$ 的 酒。现在请各位品酒师分别对于 $r = 0,1,2,⋯,n-1$ ,统计出有多少种方法可以 选出 $2$ 杯“ $r$ 相似”的酒,并回答选择 $2$ 杯“$r$ 相似”的酒调兑可以得到的美味度的最大值。

输入输出格式

输入格式


第 $1$ 行包含 $1$ 个正整数 $n$ ,表示鸡尾酒的杯数。 第 $2$ 行包含一个长度为 $n$ 的字符串 $S$,其中第 $i$ 个字符表示第 $i$ 杯酒的标签。 第 $3$ 行包含 $n$ 个整数,相邻整数之间用单个空格隔开,其中第 $i$ 个整数表示第 $i$ 杯酒的美味度 $a_i$ 。

输出格式


包括 $n$ 行。 第 $i$ 行输出 $2$ 个整数,中间用单个空格隔开。第 $1$ 个整 数表示选出两杯“ $(i - 1)$ 相似”的酒的方案数,第 2 个整数表示选出两杯 “ $(i - 1)$ 相似”的酒调兑可以得到的最大美味度。若不存在两杯“ $(i - 1)$ 相似” 的酒,这两个数均为 $0$ 。

输入输出样例

输入样例 #1

10
ponoiiipoi
2 1 4 7 4 8 3 6 4 7

输出样例 #1

45 56
10 56
3 32
0 0
0 0
0 0
0 0
0 0
0 0
0 0

输入样例 #2

12
abaabaabaaba
1 -2 3 -4 5 -6 7 -8 9 -10 11 -12

输出样例 #2

66 120
34 120
15 55
12 40
9 27
7 16
5 7
3 -4
2 -4
1 -4
0 0
0 0

说明

【样例说明 1】 用二元组 $(p, q)$ 表示第 $p$ 杯酒与第 $q$ 杯酒。 $0$ 相似:所有 $45$ 对二元组都是 $0$ 相似的,美味度最大的是 $8 × 7 = 56 $。 $1$ 相似: $(1,8) (2,4) (2,9) (4,9) (5,6) (5,7) (5,10) (6,7) (6,10) (7,10) $,最大的 $8 × 7 = 56$ 。 $2$ 相似: $(1,8) (4,9) (5,6)$ ,最大的 $4 × 8 = 32$ 。 没有 $3,4,5, ⋯ ,9$ 相似的两杯酒,故均输出 $0$ 。 ![](https://cdn.luogu.org/upload/pic/1508.png) 【时限1s,内存512M】