[SCOI2008]奖励关

题目背景

08四川NOI省选

题目描述

你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1 次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。 获取第 i 种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i 种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi 可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。 假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?

输入输出格式

输入格式


第一行为两个正整数k 和n,即宝物的数量和种类。以下n行分别描述一种 宝物,其中第一个整数代表分值,随后的整数依次代表该宝物的各个前提宝物(各 宝物编号为1到n),以0结尾。

输出格式


输出一个实数,保留六位小数,即在最优策略下平均情况的得分。

输入输出样例

输入样例 #1

1 2
1 0
2 0

输出样例 #1

1.500000

输入样例 #2

6 6
12 2 3 4 5 0
15 5 0
-2 2 4 5 0
-11 2 5 0
5 0
1 2 4 5 0

输出样例 #2

10.023470

说明

1 <= k <= 100, 1 <= n <= 15,分值为[-106,106]内的整数。