[HNOI2008]玩具装箱TOY

题目描述

P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为 $1\cdots N$ 的 $N$ 件玩具,第 $i$ 件玩具经过压缩后变成一维长度为 $C_i$ .为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第 $i$ 件玩具到第 $j$ 个玩具放到一个容器中,那么容器的长度将为 $x=j-i+\sum\limits_{k=i}^{j}C_k$ 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为 $x$ ,其制作费用为 $(X-L)^2$ .其中 $L$ 是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过 $L$ 。但他希望费用最小. 感谢@ACの666 提供的Latex题面

输入输出格式

输入格式


第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

输出格式


输出最小费用

输入输出样例

输入样例 #1

5 4
3
4
2
1
4

输出样例 #1

1