[THUWC2017]在美妙的数学王国中畅游

题目背景

#滥用本题评测将被封号 数字和数学规律主宰着这个世界。 机器的运转, 生命的消长, 宇宙的进程, 这些神秘而又美妙的过程无不可以用数学的语言展现出来。 这印证了一句古老的名言: “学好数理化,走遍天下都不怕。”

题目描述

学渣小R被大学的数学课程虐得生活不能自理,微积分的成绩曾是他在教室里上的课的最低分。然而他的某位陈姓室友却能轻松地在数学考试中得到满分。为了提升自己的数学课成绩,有一天晚上(在他睡觉的时候),他来到了数学王国。 数学王国中,每个人的智商可以用一个属于$[0,1]$的实数表示。数学王国中有$n$个城市,编号从$0$到$n-1$,这些城市由若干座魔法桥连接。每个城市的中心都有一个魔法球,每个魔法球中藏有一道数学题。每个人在做完这道数学题之后都会得到一个在$[0,1]$区间内的分数。一道题可以用一个从$[0,1]$映射到$[0,1]$的函数$f(x)$表示。若一个人的智商为$x$,则他做完这道数学题之后会得到$f(x)$分。函数$f$有三种形式: 1. 正弦函数$sin(a x + b)\ (a \in [0,1], b \in [0,\pi],a+b\in[0,\pi])$ 2. 指数函数$e^{ax+b}\ (a\in [-1,1], b\in [-2,0], a+b\in [-2,0])$ 3. 一次函数$ax + b\ (a\in [-1,1],b\in[0,1],a+b\in [0,1])$ 数学王国中的魔法桥会发生变化,有时会有一座魔法桥消失,有时会有一座魔法桥出现。但在任意时刻,只存在至多一条连接任意两个城市的简单路径(即所有城市形成一个森林)。在初始情况下,数学王国中不存在任何的魔法桥。 数学王国的国王拉格朗日很乐意传授小R数学知识,但前提是小R要先回答国王的问题。这些问题具有相同的形式,即一个智商为$x$的人从城市$u$旅行到城市$v$(即经过$u$到$v$这条路径上的所有城市,包括$u$和$v$)且做了所有城市内的数学题后,他所有得分的总和是多少。

输入输出格式

输入格式


第一行两个正整数 $n,m$和一个字符串$type$。表示数学王国中共有$n$座城市,发生了$m$个事件,该数据的类型为$type$。$type$字符串是为了能让大家更方便地获得部分分,你可能不需要用到这个输入。其具体含义在**【限制与约定】**中有解释。 接下来$n$行,第$i$行表示初始情况下编号为 $i$ 的城市的魔法球中的函数。一个魔法用一个整数 $f$ 表示函数的类型,两个实数 $a,b$ 表示函数的参数,若 1. $f=1$,则函数为$f(x)=sin(ax+b)(a \in [0,1], b \in [0,\pi],a+b\in[0,\pi])$ 2. $f=2$,则函数为$f(x)=e^{ax+b}(a\in[-1,1],b\in[-2,0],a+b\in[-2,0])$ 3. $f=3$,则函数为$f(x)=ax+b(a\in[-1,1],b\in[0,1],a+b\in[0,1])$ 接下来 $m$ 行,每行描述一个事件,事件分为四类。 1. `appear u v` 表示数学王国中出现了一条连接$u$和$v$这两座城市的魔法桥$(0\le u,v < n, u\ne v)$ ,保证连接前$u$和$v$这两座城市不能互相到达。 2. `disappear u v` 表示数学王国中连接$u$和$v$这两座城市的魔法桥消失了,保证这座魔法桥是存在的。 3. `magic c f a b` 表示城市$c$的魔法球中的魔法变成了类型为$f$,参数为$a,b$的函数 4. `travel u v x` 表示询问一个智商为$x$的人从城市$u$旅行到城市$v$(即经过$u$到$v$这条路径上的所有城市,包括$u$和$v$)后,他得分的总和是多少。若无法从$u$到达$v$,则输出一行一个字符串 `unreachable`。

输出格式


对于每个询问,输出一行实数,表示得分的总和。

输入输出样例

输入样例 #1

3 7 C1
1 1 0
3 0.5 0.5
3 -0.5 0.7
appear 0 1
travel 0 1 0.3
appear 0 2
travel 1 2 0.5
disappear 0 1
appear 1 2
travel 1 2 0.5

输出样例 #1

9.45520207e-001
1.67942554e+000
1.20000000e+000

说明

## 【限制与约定】 对于100%的数据,$1\le n\le 100000, 1\le m \le 200000$ 。 本题共有20个数据点,每个数据点5分。 测试点|$n$|$m$|数据类型 :-:|:-:|:-:|:-:| $1$|$\leq 100$|$\leq 200$|C1 $2-5$|$\leq 100000$|$\leq 200000$|A0 $6$|null|null|B0 $7-8$|null|null|D0 $9-14$|null|null|A1 $15-17$|null|null|C1 $18-20$|null|null|D1 数据类型的含义: A:不存在 `disappear` 事件,且所有`appear`事件中的$u=v-1$ B:不存在 `disappear` 事件 C:所有的 `travel` 事件经过的城市总数 $\le 5000000$(不可到达的城市对不计入在内) D:无限制 0:所有 `travel` 事件中,$x=1$(即所有人的智商均为$1$) 1:无限制 ## 【评分标准】 如果你的答案与标准答案的相对误差在$10^{-7}$以内或绝对误差在$10^{-7}$以内,则被判定为正确。 如果你的所有答案均为正确,则得满分,否则得0分。 请注意输出格式:每行输出一个答案,答案只能为 `unreachable` 或者一个实数(建议使用科学计数法表示)。每行的长度不得超过50。错误输出格式会被判定为0分。 ## 【小R教你学数学】 若函数$f(x)$的$n$阶导数在$[a,b]$区间内连续,则对$f(x)$在$x_0(x_0\in[a,b])$处使用$n$次拉格朗日中值定理可以得到带拉格朗日余项的泰勒展开式 $f(x)=f(x_0)+\frac{f'(x_0)(x-x_0)}{1!}+\frac{f''(x_0)(x-x_0)^2}{2!}+ \cdots +\frac{f^{(n-1)}(x_0)(x-x_0)^{n-1}}{(n-1)!}+\frac{f^{(n)}(\xi)(x-x_0)^n}{n!},x\in[a,b]$ 其中,当$x>x_0$时,$\xi\in[x_0,x]$。当$x