[NOI2018]归程

题目背景

本题因为一些原因只能评测16组数据。 剩下的四组数据:https://www.luogu.org/problemnew/show/U31655

题目描述

本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定。 魔力之都可以抽象成一个 $n$ 个节点、$m$ 条边的无向连通图(节点的编号从 $1$ 至 $n$)。我们依次用 $l,a$ 描述一条边的**长度、海拔**。 作为季风气候的代表城市,魔力之都时常有雨水相伴,因此道路积水总是不可避免 的。由于整个城市的排水系统连通,因此**有积水的边一定是海拔相对最低的一些边**。我们用**水位线**来描述降雨的程度,它的意义是:所有海拔**不超过**水位线的边都是**有积水**的。 Yazid 是一名来自魔力之都的OIer,刚参加完ION2018 的他将踏上归程,回到他 温暖的家。 Yazid 的家恰好在魔力之都的 $1$ 号节点。对于接下来 $Q$ 天,每一天Yazid 都会告诉你他的出发点 $v$ ,以及当天的水位线$p$。 每一天,Yazid 在出发点都拥有一辆车。这辆车由于一些故障不能经过有积水的边。 Yazid 可以在任意节点下车,这样接下来他就可以步行经过有积水的边。但车会被留在他下车的节点并不会再被使用。 需要特殊说明的是,第二天车会被重置,这意味着: - 车会在新的出发点被准备好。 - Yazid 不能利用之前在某处停放的车。 Yazid 非常讨厌在雨天步行,因此他希望在完成回家这一目标的同时,最小化他**步行经过的边**的总长度。请你帮助 Yazid 进行计算。 本题的部分测试点将强制在线,具体细节请见【输入格式】和【子任务】。

输入输出格式

输入格式


单个测试点中包含多组数据。输入的第一行为一个非负整数$T$,表示数据的组数。 接下来依次描述每组数据,对于每组数据: 第一行 $2$ 个非负整数 $n,m$,分别表示节点数、边数。 接下来 $m$ 行,每行 $4$ 个正整数$u, v, l, a$,描述一条连接节点 $u, v$ 的、长度为 $l$、海拔为 $a$ 的边。 在这里,我们保证$1 \leq u,v \leq n$。 接下来一行 $3$ 个非负数 $Q, K, S$ ,其中 $Q$ 表示总天数,$K \in {0,1}$ 是一个会在下面被用到的系数,$S$ 表示的是可能的最高水位线。 接下来 $Q$ 行依次描述每天的状况。每行 $2$ 个整数 $v_0; p_0$ 描述一天: 这一天的出发节点为$v = (v_0 + K \times \mathrm{lastans} - 1) \bmod n + 1$。 这一天的水位线为$p = (p_0 + K \times \mathrm{lastans}) \bmod (S + 1)$。 其中 `lastans` 表示上一天的答案(最小步行总路程)。特别地,我们规定第 $1$ 天时 `lastans = 0`。 在这里,我们保证$1 \leq v_0 \leq n,0 \leq p_0 \leq S$ 。 对于输入中的每一行,如果该行包含多个数,则用单个空格将它们隔开。

输出格式


依次输出各组数据的答案。对于每组数据: - 输出 $Q$ 行每行一个整数,依次表示每天的最小步行总路程。

输入输出样例

输入样例 #1

1
4 3
1 2 50 1
2 3 100 2
3 4 50 1
5 0 2
3 0
2 1
4 1
3 1
3 2

输出样例 #1

0
50
200
50
150

输入样例 #2

1
5 5
1 2 1 2
2 3 1 2
4 3 1 2
5 3 1 2
1 5 2 1
4 1 3
5 1
5 2
2 0
4 0

输出样例 #2

0
2
3
1

说明

【样例1 解释】 第一天没有降水,Yazid 可以坐车直接回到家中。 第二天、第三天、第四天的积水情况相同,均为连接1; 2 号节点的边、连接3; 4 号 点的边有积水。 对于第二天,Yazid 从2 号点出发坐车只能去往3 号节点,对回家没有帮助。因此 Yazid 只能纯靠徒步回家。 对于第三天,从4 号节点出发的唯一一条边是有积水的,车也就变得无用了。Yazid只能纯靠徒步回家。 对于第四天,Yazid 可以坐车先到达2 号节点,再步行回家。 第五天所有的边都积水了,因此Yazid 只能纯靠徒步回家。 本组数据强制在线。 本组数据强制在线。 第一天的答案是 $0$,因此第二天的 $v=\left( 5+0-1\right)\bmod 5+1=5$,$p=\left(2+0\right)\bmod\left(3+1\right)=2$。 第二天的答案是 $2$,因此第三天的 $v=\left( 2+2-1\right)\bmod 5+1=4$,$p=\left(0+2\right)\bmod\left(3+1\right)=2$。 第三天的答案是 $3$,因此第四天的 $v=\left( 4+3-1\right)\bmod 5+1=2$,$p=\left(0+3\right)\bmod\left(3+1\right)=3$。 所有测试点均保证 $T\leq 3$,所有测试点中的所有数据均满足如下限制: - $n\leq 2\times 10^5$,$m\leq 4\times 10^5$,$Q\leq 4\times 10^5$,$K\in\left\{0,1\right\}$,$1\leq S\leq 10^9$。 - 对于所有边:$l\leq 10^4$,$a\leq 10^9$。 - 任意两点之间都直接或间接通过边相连。 **为了方便你快速理解,我们在表格中使用了一些简单易懂的表述。在此,我们对这些内容作形式化的说明:** - 图形态:对于表格中该项为“一棵树”或“一条链”的测试点,保证m = n-1。 除此之外,这两类测试点分别满足如下限制: - 一棵树:保证输入的图是一棵树,即保证边不会构成回路。 - 一条链:保证所有边满足u + 1 = v。 - 海拔:对于表格中该项为“一种”的测试点,保证对于所有边有a = 1。 - 强制在线:对于表格中该项为“是”的测试点,保证K = 1;如果该项为“否”, 则有K = 0。 - 对于所有测试点,如果上述对应项为“不保证”,则对该项内容不作任何保证。 $n$|$m$|$Q=$|测试点|形态|海拔|强制在线 -|-|-|-|-|-|- $\leq 1$|$\leq 0$|$0$|1|不保证|一种|否 $\leq 6$|$\leq 10$|$10$|2|不保证|一种|否 $\leq 50$|$\leq 150$|$100$|3|不保证|一种|否 $\leq 100$|$\leq 300$|$200$|4|不保证|一种|否 $\leq 1500$|$\leq 4000$|$2000$|5|不保证|一种|否 $\leq 200000$|$\leq 400000$|$100000$|6|不保证|一种|否 $\leq 1500$|$=n-1$|$2000$|7|一条链|不保证|否 $\leq 1500$|$=n-1$|$2000$|8|一条链|不保证|否 $\leq 1500$|$=n-1$|$2000$|9|一条链|不保证|否 $\leq 200000$|$=n-1$|$100000$|10|一棵树|不保证|否 $\leq 200000$|$=n-1$|$100000$|11|一棵树|不保证|是 $\leq 200000$|$\leq 400000$|$100000$|12|不保证|不保证|否 $\leq 200000$|$\leq 400000$|$100000$|13|不保证|不保证|否 $\leq 200000$|$\leq 400000$|$100000$|14|不保证|不保证|否 $\leq 1500$|$\leq 4000$|$2000$|15|不保证|不保证|是 $\leq 1500$|$\leq 4000$|$2000$|16|不保证|不保证|是 $\leq 200000$|$\leq 400000$|$100000$|17|不保证|不保证|是 $\leq 200000$|$\leq 400000$|$100000$|18|不保证|不保证|是 $\leq 200000$|$\leq 400000$|$400000$|19|不保证|不保证|是 $\leq 200000$|$\leq 400000$|$400000$|20|不保证|不保证|是