DIVCNT1 - Counting Divisors

题意翻译

$\sigma_0(i)$ 表示$i$ 的约数个数 求$S_1(n)=\sum_{i=1}^n\sigma_0(i)$ 多测,$T\le10^5,n\lt2^{63}$ Translated by @Kelin

题目描述

Let $ \sigma_0(n) $ be the number of positive divisors of $ n $ . For example, $ \sigma_0(1) = 1 $ , $ \sigma_0(2) = 2 $ and $ \sigma_0(6) = 4 $ . Let $$ S_1(n) = \sum _{i=1}^n \sigma_0(i). $$ Given $ N $ , find $ S_1(N) $ .

输入输出格式

输入格式


First line contains $ T $ ( $ 1 \le T \le 100000 $ ), the number of test cases. Each of the next $ T $ lines contains a single integer $ N $ . ( $ 1 \le N < 2^{63} $ )

输出格式


For each number $ N $ , output a single line containing $ S_1(N) $ .

输入输出样例

输入样例 #1

5
1
2
3
10
100

输出样例 #1

1
3
5
27
482