CF1006A Adjacent Replacements

    • 143通过
    • 208提交
  • 题目来源 CodeForces 1006A
  • 评测方式 RemoteJudge
  • 标签
  • 难度 入门难度
  • 时空限制 1000ms / 256MB

题解

  • 提示:收藏到任务计划后,可在首页查看。
  • 体验新版界面

    最新讨论 显示

    推荐的相关题目 显示

    题意翻译

    题目描述:

    输入$n$个数,若其为偶数则减$1$,否则不变。

    输入输出格式:

    输入格式:

    共两行,第一行为一个整数$n$ ( 1 $\le$ n $\le$ 1000 ) ,表示共$n$个数;第二行为$n$个整数$a_i$( 1 $\le$ $a_i$ $\le$ $10^9$)。

    输出格式:

    共一行,为$n$个数,用空格隔开,即将$a_i$依题意改变后的数。

    题目描述

    Mishka got an integer array $ a $ of length $ n $ as a birthday present (what a surprise!).

    Mishka doesn't like this present and wants to change it somehow. He has invented an algorithm and called it "Mishka's Adjacent Replacements Algorithm". This algorithm can be represented as a sequence of steps:

    • Replace each occurrence of $ 1 $ in the array $ a $ with $ 2 $ ;
    • Replace each occurrence of $ 2 $ in the array $ a $ with $ 1 $ ;
    • Replace each occurrence of $ 3 $ in the array $ a $ with $ 4 $ ;
    • Replace each occurrence of $ 4 $ in the array $ a $ with $ 3 $ ;
    • Replace each occurrence of $ 5 $ in the array $ a $ with $ 6 $ ;
    • Replace each occurrence of $ 6 $ in the array $ a $ with $ 5 $ ;
    • $ \dots $
    • Replace each occurrence of $ 10^9 - 1 $ in the array $ a $ with $ 10^9 $ ;
    • Replace each occurrence of $ 10^9 $ in the array $ a $ with $ 10^9 - 1 $ .

    Note that the dots in the middle of this algorithm mean that Mishka applies these replacements for each pair of adjacent integers ( $ 2i - 1, 2i $ ) for each $ i \in\{1, 2, \ldots, 5 \cdot 10^8\} $ as described above.

    For example, for the array $ a = [1, 2, 4, 5, 10] $ , the following sequence of arrays represents the algorithm:

    $ [1, 2, 4, 5, 10] $ $ \rightarrow $ (replace all occurrences of $ 1 $ with $ 2 $ ) $ \rightarrow $ $ [2, 2, 4, 5, 10] $ $ \rightarrow $ (replace all occurrences of $ 2 $ with $ 1 $ ) $ \rightarrow $ $ [1, 1, 4, 5, 10] $ $ \rightarrow $ (replace all occurrences of $ 3 $ with $ 4 $ ) $ \rightarrow $ $ [1, 1, 4, 5, 10] $ $ \rightarrow $ (replace all occurrences of $ 4 $ with $ 3 $ ) $ \rightarrow $ $ [1, 1, 3, 5, 10] $ $ \rightarrow $ (replace all occurrences of $ 5 $ with $ 6 $ ) $ \rightarrow $ $ [1, 1, 3, 6, 10] $ $ \rightarrow $ (replace all occurrences of $ 6 $ with $ 5 $ ) $ \rightarrow $ $ [1, 1, 3, 5, 10] $ $ \rightarrow $ $ \dots $ $ \rightarrow $ $ [1, 1, 3, 5, 10] $ $ \rightarrow $ (replace all occurrences of $ 10 $ with $ 9 $ ) $ \rightarrow $ $ [1, 1, 3, 5, 9] $ . The later steps of the algorithm do not change the array.

    Mishka is very lazy and he doesn't want to apply these changes by himself. But he is very interested in their result. Help him find it.

    输入输出格式

    输入格式:

    The first line of the input contains one integer number $ n $ ( $ 1 \le n \le 1000 $ ) — the number of elements in Mishka's birthday present (surprisingly, an array).

    The second line of the input contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le 10^9 $ ) — the elements of the array.

    输出格式:

    Print $ n $ integers — $ b_1, b_2, \dots, b_n $ , where $ b_i $ is the final value of the $ i $ -th element of the array after applying "Mishka's Adjacent Replacements Algorithm" to the array $ a $ . Note that you cannot change the order of elements in the array.

    输入输出样例

    输入样例#1: 复制
    5
    1 2 4 5 10
    
    输出样例#1: 复制
    1 1 3 5 9
    
    输入样例#2: 复制
    10
    10000 10 50605065 1 5 89 5 999999999 60506056 1000000000
    
    输出样例#2: 复制
    9999 9 50605065 1 5 89 5 999999999 60506055 999999999
    

    说明

    The first example is described in the problem statement.

    提示
    标程仅供做题后或实在无思路时参考。
    请自觉、自律地使用该功能并请对自己的学习负责。
    如果发现恶意抄袭标程,将按照I类违反进行处理。