# CF1102A Integer Sequence Dividing

• 90通过
• 130提交
• 题目来源
• 评测方式 RemoteJudge
• 标签
• 难度 普及/提高-
• 时空限制 1000ms / 256MB
• 提示：收藏到任务计划后，可在首页查看。

## 题意翻译

给你一个数n，求把1~n的整数分为两组，使得每组的和的差的绝对值最小。

## 题目描述

You are given an integer sequence $1, 2, \dots, n$ . You have to divide it into two sets $A$ and $B$ in such a way that each element belongs to exactly one set and $|sum(A) - sum(B)|$ is minimum possible.

The value $|x|$ is the absolute value of $x$ and $sum(S)$ is the sum of elements of the set $S$ .

## 输入输出格式

输入格式：

The first line of the input contains one integer $n$ ( $1 \le n \le 2 \cdot 10^9$ ).

输出格式：

Print one integer — the minimum possible value of $|sum(A) - sum(B)|$ if you divide the initial sequence $1, 2, \dots, n$ into two sets $A$ and $B$ .

## 输入输出样例

输入样例#1： 复制
3

输出样例#1： 复制
0

输入样例#2： 复制
5

输出样例#2： 复制
1

输入样例#3： 复制
6

输出样例#3： 复制
1


## 说明

Some (not all) possible answers to examples:

In the first example you can divide the initial sequence into sets $A = \{1, 2\}$ and $B = \{3\}$ so the answer is $0$ .

In the second example you can divide the initial sequence into sets $A = \{1, 3, 4\}$ and $B = \{2, 5\}$ so the answer is $1$ .

In the third example you can divide the initial sequence into sets $A = \{1, 4, 5\}$ and $B = \{2, 3, 6\}$ so the answer is $1$ .

提示
标程仅供做题后或实在无思路时参考。
请自觉、自律地使用该功能并请对自己的学习负责。
如果发现恶意抄袭标程，将按照I类违反进行处理。