# CF311B Cats Transport

• 249通过
• 586提交
• 题目来源
• 评测方式 RemoteJudge
• 标签 前缀和 斜率优化 枚举,暴力
• 难度 省选/NOI-
• 时空限制 2000ms / 256MB
• 提示：收藏到任务计划后，可在首页查看。

## 题意翻译

题目描述

Zxr960115 是一个大农场主。他养了m只可爱的猫子,雇佣了p个铲屎官。这里有一条又直又长的道路穿过了农场，有n个山丘坐落在道路周围，编号自左往右从1到n。山丘i与山丘i-1的距离是Di米。铲屎官们住在1号山丘。

一天，猫子们外出玩耍。猫子i去山丘Hi游玩，在Ti时间结束他的游玩，然后在山丘Hi傻等铲屎官。铲屎官们必须把所有的猫子带上。每个铲屎官直接从H1走到Hn，中间不停下，可以认为不花费时间的把游玩结束的猫子带上。每个铲屎官的速度为一米每单位时间，并且足够强壮来带上任意数量的猫子。

举个栗子，假装我们有两个山丘(D2=1)，有一只猫子，他想去山丘2玩到时间3。然后嘞铲屎官如果在时间2或者时间3从1号山丘出发，他就能抱走猫子。如果他在时间1出发那么就不行(猫子还在玩耍)。如果铲屎官在时间2出发，猫子就不用等他（ΔT=0）。如果他在时间3出发，猫子就要等他1个单位时间。

你的任务是安排每个铲屎官出发的时间，最小化猫子们等待的时间之和。

感谢@Thecats 提供的翻译

## 题目描述

Zxr960115 is owner of a large farm. He feeds $m$ cute cats and employs $p$ feeders. There's a straight road across the farm and $n$ hills along the road, numbered from 1 to $n$ from left to right. The distance between hill $i$ and $(i-1)$ is $d_{i}$ meters. The feeders live in hill 1.

One day, the cats went out to play. Cat $i$ went on a trip to hill $h_{i}$ , finished its trip at time $t_{i}$ , and then waited at hill $h_{i}$ for a feeder. The feeders must take all the cats. Each feeder goes straightly from hill 1 to $n$ without waiting at a hill and takes all the waiting cats at each hill away. Feeders walk at a speed of 1 meter per unit time and are strong enough to take as many cats as they want.

For example, suppose we have two hills $(d_{2}=1)$ and one cat that finished its trip at time 3 at hill 2 $(h_{1}=2)$ . Then if the feeder leaves hill 1 at time 2 or at time 3, he can take this cat, but if he leaves hill 1 at time 1 he can't take it. If the feeder leaves hill 1 at time 2, the cat waits him for 0 time units, if the feeder leaves hill 1 at time 3, the cat waits him for 1 time units.

Your task is to schedule the time leaving from hill 1 for each feeder so that the sum of the waiting time of all cats is minimized.

## 输入输出格式

输入格式：

The first line of the input contains three integers $n,m,p$ $(2<=n<=10^{5},1<=m<=10^{5},1<=p<=100)$ .

The second line contains $n-1$ positive integers $d_{2},d_{3},...,d_{n}$ $(1<=d_{i}&lt;10^{4})$ .

Each of the next $m$ lines contains two integers $h_{i}$ and $t_{i}$ $(1<=h_{i}<=n,0<=t_{i}<=10^{9})$ .

输出格式：

Output an integer, the minimum sum of waiting time of all cats.

Please, do not write the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.

## 输入输出样例

输入样例#1： 复制
4 6 2
1 3 5
1 0
2 1
4 9
1 10
2 10
3 12

输出样例#1： 复制
3

提示
标程仅供做题后或实在无思路时参考。
请自觉、自律地使用该功能并请对自己的学习负责。
如果发现恶意抄袭标程，将按照I类违反进行处理。