Alternating Tree

题意翻译

给定一棵带点权的树,求所有有向路径的权值和。 一条有向路径的权值如下定义: 设这条路径依次经过的点的权值分别为 $a_1, a_2, ..., a_k$。 则路径的权值为 $a_1\times (-1)^2+a_2\times (-1)^3+...+a_n\times (-1)^{(n+1)}$。 答案对 $10^9+7$ 取模。

题目描述

Given a tree with $ n $ nodes numbered from $ 1 $ to $ n $ . Each node $ i $ has an associated value $ V_i $ . If the simple path from $ u_1 $ to $ u_m $ consists of $ m $ nodes namely $ u_1 \rightarrow u_2 \rightarrow u_3 \rightarrow \dots u_{m-1} \rightarrow u_{m} $ , then its alternating function $ A(u_{1},u_{m}) $ is defined as $ A(u_{1},u_{m}) = \sum\limits_{i=1}^{m} (-1)^{i+1} \cdot V_{u_{i}} $ . A path can also have $ 0 $ edges, i.e. $ u_{1}=u_{m} $ . Compute the sum of alternating functions of all unique simple paths. Note that the paths are directed: two paths are considered different if the starting vertices differ or the ending vertices differ. The answer may be large so compute it modulo $ 10^{9}+7 $ .

输入输出格式

输入格式


The first line contains an integer $ n $ $ (2 \leq n \leq 2\cdot10^{5} ) $ — the number of vertices in the tree. The second line contains $ n $ space-separated integers $ V_1, V_2, \ldots, V_n $ ( $ -10^9\leq V_i \leq 10^9 $ ) — values of the nodes. The next $ n-1 $ lines each contain two space-separated integers $ u $ and $ v $ $ (1\leq u, v\leq n, u \neq v) $ denoting an edge between vertices $ u $ and $ v $ . It is guaranteed that the given graph is a tree.

输出格式


Print the total sum of alternating functions of all unique simple paths modulo $ 10^{9}+7 $ .

输入输出样例

输入样例 #1

4
-4 1 5 -2
1 2
1 3
1 4

输出样例 #1

40

输入样例 #2

8
-2 6 -4 -4 -9 -3 -7 23
8 2
2 3
1 4
6 5
7 6
4 7
5 8

输出样例 #2

4

说明

Consider the first example. A simple path from node $ 1 $ to node $ 2 $ : $ 1 \rightarrow 2 $ has alternating function equal to $ A(1,2) = 1 \cdot (-4)+(-1) \cdot 1 = -5 $ . A simple path from node $ 1 $ to node $ 3 $ : $ 1 \rightarrow 3 $ has alternating function equal to $ A(1,3) = 1 \cdot (-4)+(-1) \cdot 5 = -9 $ . A simple path from node $ 2 $ to node $ 4 $ : $ 2 \rightarrow 1 \rightarrow 4 $ has alternating function $ A(2,4) = 1 \cdot (1)+(-1) \cdot (-4)+1 \cdot (-2) = 3 $ . A simple path from node $ 1 $ to node $ 1 $ has a single node $ 1 $ , so $ A(1,1) = 1 \cdot (-4) = -4 $ . Similarly, $ A(2, 1) = 5 $ , $ A(3, 1) = 9 $ , $ A(4, 2) = 3 $ , $ A(1, 4) = -2 $ , $ A(4, 1) = 2 $ , $ A(2, 2) = 1 $ , $ A(3, 3) = 5 $ , $ A(4, 4) = -2 $ , $ A(3, 4) = 7 $ , $ A(4, 3) = 7 $ , $ A(2, 3) = 10 $ , $ A(3, 2) = 10 $ . So the answer is $ (-5) + (-9) + 3 + (-4) + 5 + 9 + 3 + (-2) + 2 + 1 + 5 + (-2) + 7 + 7 + 10 + 10 = 40 $ . Similarly $ A(1,4)=-2, A(2,2)=1, A(2,1)=5, A(2,3)=10, A(3,3)=5, A(3,1)=9, A(3,2)=10, A(3,4)=7, A(4,4)=-2, A(4,1)=2, A(4,2)=3 , A(4,3)=7 $ which sums upto 40.