P1034 矩形覆盖

    • 948通过
    • 1.9K提交
  • 题目提供者 CCF_NOI
  • 评测方式 云端评测
  • 标签 搜索 计算几何 NOIp提高组 2002
  • 难度 提高+/省选-
  • 时空限制 1000ms / 128MB

题解

  • 提示:收藏到任务计划后,可在首页查看。
  • 最新讨论 显示

    推荐的相关题目 显示

    题目描述

    在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示。例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一。

    这些点可以用 k 个矩形(1<=k<=4)全部覆盖,矩形的边平行于坐标轴。当 k=2 时,可用如图二的两个矩形 sl,s2 覆盖,s1,s2 面积和为 4。问题是当 n 个点坐标和 k 给出后,怎样才能使得覆盖所有点的 k 个矩形的面积之和为最小呢。约定:覆盖一个点的矩形面积为 0;覆盖平行于坐标轴直线上点的矩形面积也为0。各个矩形必须完全分开(边线与顶点也都不能重合)。

    输入输出格式

    输入格式:

    n k xl y1 x2 y2 ... ...

    xn yn (0<=xi,yi<=500)

    输出格式:

    输出至屏幕。格式为:

    一个整数,即满足条件的最小的矩形面积之和。

    输入输出样例

    输入样例#1: 复制
    4 2
    1 1
    2 2
    3 6
    0 7
    
    输出样例#1: 复制
    4
    提示
    标程仅供做题后或实在无思路时参考。
    请自觉、自律地使用该功能并请对自己的学习负责。
    如果发现恶意抄袭标程,将按照I类违反进行处理。