P1081 开车旅行

    • 919通过
    • 3K提交
  • 题目提供者 CCF_NOI
  • 评测方式 云端评测
  • 标签 倍增 模拟 进制 NOIp提高组 2012 高性能
  • 难度 省选/NOI-
  • 时空限制 1000ms / 128MB

题解

  • 提示:收藏到任务计划后,可在首页查看。
  • 最新讨论 显示

    推荐的相关题目 显示

    题目描述

    小 A 和小 B 决定利用假期外出旅行,他们将想去的城市从 1 到 N 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i 的海拔高度为Hi,城市 i 和城市 j 之间的距离 d[i,j]恰好是这两个城市海拔高度之差的绝对值,即d[i,j] = |Hi− Hj|。 旅行过程中,小 A 和小 B 轮流开车,第一天小 A 开车,之后每天轮换一次。他们计划选择一个城市 S 作为起点,一直向东行驶,并且最多行驶 X 公里就结束旅行。小 A 和小 B的驾驶风格不同,小 B 总是沿着前进方向选择一个最近的城市作为目的地,而小 A 总是沿着前进方向选择第二近的城市作为目的地(注意:本题中如果当前城市到两个城市的距离相同,则认为离海拔低的那个城市更近)。如果其中任何一人无法按照自己的原则选择目的城市,或者到达目的地会使行驶的总距离超出 X 公里,他们就会结束旅行。

    在启程之前,小 A 想知道两个问题:

    1. 对于一个给定的 X=X0,从哪一个城市出发,小 A 开车行驶的路程总数与小 B 行驶的路程总数的比值最小(如果小 B 的行驶路程为 0,此时的比值可视为无穷大,且两个无穷大视为相等)。如果从多个城市出发,小 A 开车行驶的路程总数与小 B 行驶的路程总数的比值都最小,则输出海拔最高的那个城市。

    2. 对任意给定的 X=Xi和出发城市 Si,小 A 开车行驶的路程总数以及小 B 行驶的路程

    总数。

    输入输出格式

    输入格式:

    第一行包含一个整数 N,表示城市的数目。

    第二行有 N 个整数,每两个整数之间用一个空格隔开,依次表示城市 1 到城市 N 的海拔高度,即 H1,H2,……,Hn,且每个 Hi都是不同的。

    第三行包含一个整数 X0。

    第四行为一个整数 M,表示给定 M 组 Si和 Xi。

    接下来的 M 行,每行包含 2 个整数 Si和 Xi,表示从城市 Si出发,最多行驶 Xi公里。

    输出格式:

    输出共 M+1 行。

    第一行包含一个整数 S0,表示对于给定的 X0,从编号为 S0的城市出发,小 A 开车行驶的路程总数与小 B 行驶的路程总数的比值最小。

    接下来的 M 行,每行包含 2 个整数,之间用一个空格隔开,依次表示在给定的 Si和

    Xi下小 A 行驶的里程总数和小 B 行驶的里程总数。

    输入输出样例

    输入样例#1: 复制
    4 
    2 3 1 4 
    3 
    4 
    1 3 
    2 3 
    3 3 
    4 3
    
    输出样例#1: 复制
    1 
    1 1 
    2 0 
    0 0 
    0 0 
    输入样例#2: 复制
    10 
    4 5 6 1 2 3 7 8 9 10 
    7 
    10 
    1 7 
    2 7 
    3 7 
    4 7 
    5 7 
    6 7 
    7 7 
    8 7 
    9 7 
    10 7
    输出样例#2: 复制
    2 
    3 2 
    2 4 
    2 1 
    2 4 
    5 1 
    5 1 
    2 1 
    2 0 
    0 0 
    0 0

    说明

    【输入输出样例 1 说明】

    各个城市的海拔高度以及两个城市间的距离如上图所示。

    如果从城市 1 出发,可以到达的城市为 2,3,4,这几个城市与城市 1 的距离分别为 1,1,2,但是由于城市 3 的海拔高度低于城市 2,所以我们认为城市 3 离城市 1 最近,城市 2 离城市1 第二近,所以小 A 会走到城市 2。到达城市 2 后,前面可以到达的城市为 3,4,这两个城市与城市 2 的距离分别为 2,1,所以城市 4 离城市 2 最近,因此小 B 会走到城市 4。到达城市 4 后,前面已没有可到达的城市,所以旅行结束。

    如果从城市 2 出发,可以到达的城市为 3,4,这两个城市与城市 2 的距离分别为 2,1,由于城市 3 离城市 2 第二近,所以小 A 会走到城市 3。到达城市 3 后,前面尚未旅行的城市为4,所以城市 4 离城市 3 最近,但是如果要到达城市 4,则总路程为 2+3=5>3,所以小 B 会直接在城市 3 结束旅行。

    如果从城市 3 出发,可以到达的城市为 4,由于没有离城市 3 第二近的城市,因此旅行

    还未开始就结束了。

    如果从城市 4 出发,没有可以到达的城市,因此旅行还未开始就结束了。

    【输入输出样例 2 说明】

    当 X=7 时, 如果从城市 1 出发,则路线为 1 -> 2 -> 3 -> 8 -> 9,小 A 走的距离为 1+2=3,小 B 走的距离为 1+1=2。(在城市 1 时,距离小 A 最近的城市是 2 和 6,但是城市 2 的海拔更高,视为与城市 1 第二近的城市,所以小 A 最终选择城市 2;走到 9 后,小 A 只有城市 10 可以走,没有第 2 选择可以选,所以没法做出选择,结束旅行)

    如果从城市 2 出发,则路线为 2 -> 6 -> 7 ,小 A 和小 B 走的距离分别为 2,4。

    如果从城市 3 出发,则路线为 3 -> 8 -> 9,小 A 和小 B 走的距离分别为 2,1。

    如果从城市 4 出发,则路线为 4 -> 6 -> 7,小 A 和小 B 走的距离分别为 2,4。

    如果从城市 5 出发,则路线为 5 -> 7 -> 8 ,小 A 和小 B 走的距离分别为 5,1。

    如果从城市 6 出发,则路线为 6 -> 8 -> 9,小 A 和小 B 走的距离分别为 5,1。

    如果从城市 7 出发,则路线为 7 -> 9 -> 10,小 A 和小 B 走的距离分别为 2,1。

    如果从城市 8 出发,则路线为 8 -> 10,小 A 和小 B 走的距离分别为 2,0。

    如果从城市 9 出发,则路线为 9,小 A 和小 B 走的距离分别为 0,0(旅行一开始就结

    束了)。

    如果从城市10出发,则路线为 10,小A 和小B 走的距离分别为0,0。

    从城市 2 或者城市 4 出发小 A 行驶的路程总数与小 B 行驶的路程总数的比值都最小,但是城市 2 的海拔更高,所以输出第一行为 2。

    对于30%的数据,有1≤N≤20,1≤M≤20;

    对于40%的数据,有1≤N≤100,1≤M≤100;

    对于50%的数据,有1≤N≤100,1≤M≤1,000;

    对于70%的数据,有1≤N≤1,000,1≤M≤10,000;

    对于100%的数据,有1≤N≤100,000,1≤M≤100,000,-1,000,000,000≤Hi≤1,000,000,000,0≤X0≤1,000,000,000,1≤Si≤N,0≤Xi≤1,000,000,000,数据保证Hi 互不相同。

    提示
    标程仅供做题后或实在无思路时参考。
    请自觉、自律地使用该功能并请对自己的学习负责。
    如果发现恶意抄袭标程,将按照I类违反进行处理。