P1297 [国家集训队]单选错位

    • 621通过
    • 875提交
  • 题目提供者 JOHNKRAM
  • 评测方式 云端评测
  • 标签 数论,数学 期望 概率论,统计 WC/CTSC/集训队
  • 难度 提高+/省选-
  • 时空限制 1000ms / 128MB

题解

  • 提示:收藏到任务计划后,可在首页查看。
  • 体验新版界面

    最新讨论 显示

    推荐的相关题目 显示

    题目背景

    原 《网线切割》请前往P1577

    题目描述

    gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案。试卷上共有n道单选题,第i道单选题有ai个选项,这ai个选项编号是1,2,3,…,ai,每个选项成为正确答案的概率都是相等的。lc采取的策略是每道题目随机写上1-ai的某个数作为答案选项,他用不了多少时间就能期望做对$\sum_{i=1}^n \frac{1}{a_i}$道题目。gx则是认认真真地做完了这n道题目,可是等他做完的时候时间也所剩无几了,于是他匆忙地把答案抄到答题纸上,没想到抄错位了:第i道题目的答案抄到了答题纸上的第i+1道题目的位置上,特别地,第n道题目的答案抄到了第1道题目的位置上。现在gx已经走出考场没法改了,不过他还是想知道自己期望能做对几道题目,这样他就知道会不会被lc鄙视了。

    我们假设gx没有做错任何题目,只是答案抄错位置了。

    输入输出格式

    输入格式:

    n很大,为了避免读入耗时太多,输入文件只有5个整数参数n, A, B, C, a1,由上交的程序产生数列a。下面给出pascal/C/C++的读入语句和产生序列的语句(默认从标准输入读入):

    // for pascal
    readln(n,A,B,C,q[1]);
    for i:=2 to n do
    q[i] := (int64(q[i-1]) * A + B) mod 100000001;
    for i:=1 to n do
    q[i] := q[i] mod C + 1;
    
    // for C/C++
    scanf("%d%d%d%d%d",&n,&A,&B,&C,a+1);
    for (int i=2;i<=n;i++)
    a[i] = ((long long)a[i-1] * A + B) % 100000001;
    for (int i=1;i<=n;i++)
    a[i] = a[i] % C + 1;

    选手可以通过以上的程序语句得到n和数列a(a的元素类型是32位整数),n和a的含义见题目描述。

    输出格式:

    输出一个实数,表示gx期望做对的题目个数,保留三位小数。

    输入输出样例

    输入样例#1: 复制
    3 2 0 4 1
    输出样例#1: 复制
    1.167
    

    说明

    【样例说明】

    正确答案   |   gx的答案    | 做对题目| 出现概率
    {1,1,1}    |    {1,1,1}    |    3    |    1/6
    {1,2,1}    |    {1,1,2}    |    1    |    1/6
    {1,3,1}    |    {1,1,3}    |    1    |    1/6
    {2,1,1}    |    {1,2,1}    |    1    |    1/6
    {2,2,1}    |    {1,2,2}    |    1    |    1/6
    {2,3,1}    |    {1,2,3}    |    0    |    1/6

    a[] = {2,3,1}

    共有6种情况,每种情况出现的概率是1/6,gx期望做对(3+1+1+1+1+0)/6 = 7/6题。(相比之下,lc随机就能期望做对11/6题)

    对于30%的数据 n≤10, C≤10

    对于80%的数据 n≤10000, C≤10

    对于90%的数据 n≤500000, C≤100000000

    对于100%的数据 2≤n≤10000000, 0≤A,B,C,a1≤100000000

    提示
    标程仅供做题后或实在无思路时参考。
    请自觉、自律地使用该功能并请对自己的学习负责。
    如果发现恶意抄袭标程,将按照I类违反进行处理。