P1414 又是毕业季II

    • 844通过
    • 2.4K提交
  • 题目提供者 lzn 管理员
  • 评测方式 云端评测
  • 标签 搜索 数论,数学 最大公约数,gcd 递推 洛谷原创 高性能
  • 难度 普及/提高-
  • 时空限制 1000ms / 128MB

题解

  • 提示:收藏到任务计划后,可在首页查看。
  • 最新讨论 显示

    推荐的相关题目 显示

    题目背景

    “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻。毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌。1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定是一生最难忘的时刻!

    题目描述

    彩排了一次,老师不太满意。当然啦,取每位同学的号数来找最大公约数显然不太合理。于是老师给每位同学评了一个能力值。于是现在问题变为,从n个学生中挑出k个人使得他们的默契程度(即能力值的最大公约数)最大。但因为节目太多了,而且每个节目需要的人数又不知道。老师想要知道所有情况下能达到的最大默契程度是多少。这下子更麻烦了,还是交给你吧~

    PS:一个数的最大公约数即本身。

    输入输出格式

    输入格式:

    第一行一个正整数n。

    第二行为n个空格隔开的正整数,表示每个学生的能力值。

    输出格式:

    总共n行,第i行为k=i情况下的最大默契程度。

    输入输出样例

    输入样例#1: 复制
    4
    1 2 3 4
    
    输出样例#1: 复制
    4
    2
    1
    1
    

    说明

    【题目来源】

    lzn原创

    【数据范围】

    记输入数据中能力值的最大值为inf。

    对于20%的数据,n<=5,inf<=1000

    对于另30%的数据,n<=100,inf<=10

    对于100%的数据,n<=10000,inf<=1e6

    提示
    标程仅供做题后或实在无思路时参考。
    请自觉、自律地使用该功能并请对自己的学习负责。
    如果发现恶意抄袭标程,将按照I类违反进行处理。