P2305 [NOI2014]购票

    • 235通过
    • 1K提交
  • 题目提供者 洛谷OnlineJudge
  • 评测方式 云端评测
  • 标签 分治 图论 斜率优化 线段树 NOI系列 2014
  • 难度 NOI/NOI+/CTSC
  • 时空限制 3000ms / 512MB

题解

  • 提示:收藏到任务计划后,可在首页查看。
  • 最新讨论 显示

    推荐的相关题目 显示

    题目描述

    今年夏天,NOI在SZ市迎来了她30周岁的生日。来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会。

    全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的父亲用道路连接。为了方便起见,我们将全国的 n 个城市用 1 到 n 的整数编号。其中SZ市的编号为 1。对于除SZ市之外的任意一个城市 v,我们给出了它在这棵树上的父亲城市 fv 以及到父亲城市道路的长度 sv。

    从城市 v 前往SZ市的方法为:选择城市 v 的一个祖先 a,支付购票的费用,乘坐交通工具到达 a。再选择城市 a 的一个祖先 b,支付费用并到达 b。以此类推,直至到达SZ市。

    对于任意一个城市 v,我们会给出一个交通工具的距离限制 lv。对于城市 v 的祖先 a,只有当它们之间所有道路的总长度不超过 lv 时,从城市 v 才可以通过一次购票到达城市 a,否则不能通过一次购票到达。对于每个城市 v,我们还会给出两个非负整数 pv,qv 作为票价参数。若城市 v 到城市 a 所有道路的总长度为 d,那么从城市 v 到城市 a 购买的票价为 dpv+qv。

    每个城市的OIer都希望自己到达SZ市时,用于购票的总资金最少。你的任务就是,告诉每个城市的OIer他们所花的最少资金是多少。

    输入输出格式

    输入格式:

    第 1 行包含2个非负整数 n,t,分别表示城市的个数和数据类型(其意义将在后面提到)。

    输入文件的第 2 到 n 行,每行描述一个除SZ之外的城市。其中第 v 行包含 5 个非负整数 f_v,s_v,p_v,q_v,l_v,分别表示城市 v 的父亲城市,它到父亲城市道路的长度,票价的两个参数和距离限制。

    请注意:输入不包含编号为 1 的SZ市,第 2 行到第 n 行分别描述的是城市 2 到城市 n。

    输出格式:

    输出包含 n-1 行,每行包含一个整数。

    其中第 v 行表示从城市 v+1 出发,到达SZ市最少的购票费用。

    同样请注意:输出不包含编号为 1 的SZ市。

    输入输出样例

    输入样例#1: 复制
    7 3 
    1 2 20 0 3 
    1 5 10 100 5 
    2 4 10 10 10 
    2 9 1 100 10 
    3 5 20 100 10 
    4 4 20 0 10 
    
    输出样例#1: 复制
    40 
    150 
    70 
    149 
    300 
    150

    说明

    从每个城市出发到达 SZ的路线如下(其中箭头表示一次直达):

    城市 2:只能选择 2 → 1,花费为 2 × 20 + 0 = 40。

    城市 3:只能选择 3 → 1,花费为 5 × 10 + 100 = 150。 城 市 4 : 由 于 4 + 2 =6 ≤ l4 = 10,故可以选择 4 →1。若选择 4 → 1,花费为 (4 +2) × 10 + 10 = 70 ; 若选 择 4 → 2 → 1,则花费为 (4 ×10 + 10) + (2 × 20 + 0) =90;因此选择 4 → 1。

    城市 5:只能选择 5 →2 → 1 , 花费为 (9 × 1 +100) + (2 × 20 + 0) = 149;无法选择 5 → 1,因为 l5 =10,而城市 5 到城市 1 总路程为 9 + 2 = 11 > 5,城市 5 不能直达城市 1。

    城市 6:若选择 6 → 1,花费为 (5 + 5) × 20 + 100 = 300;若选择 6 → 3 →1,花费为 (5 × 20 + 100) + (5 × 10 + 100) = 350;因此选择 6 → 1。

    城市 7:选择 7 → 4 → 1,花费为 (4 × 20 + 0) + ((4 + 2) × 10 + 10) = 150;

    其他方案均比该方案差。

    数据规模

    提示
    标程仅供做题后或实在无思路时参考。
    请自觉、自律地使用该功能并请对自己的学习负责。
    如果发现恶意抄袭标程,将按照I类违反进行处理。