P3195 [HNOI2008]玩具装箱TOY

    • 2.4K通过
    • 5.5K提交
  • 题目提供者 洛谷
  • 评测方式 云端评测
  • 标签 动态规划,动规,dp 单调队列 斜率优化 2008 湖南
  • 难度 省选/NOI-
  • 时空限制 1000ms / 128MB

题解

  • 提示:收藏到任务计划后,可在首页查看。
  • 体验新版界面

    最新讨论 显示

    推荐的相关题目 显示

    题目描述

    P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为 $1\cdots N$ 的 $N$ 件玩具,第 $i$ 件玩具经过压缩后变成一维长度为 $C_i$ .为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第 $i$ 件玩具到第 $j$ 个玩具放到一个容器中,那么容器的长度将为 $x=j-i+\sum\limits_{k=i}^{j}C_k$ 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为 $x$ ,其制作费用为 $(X-L)^2$ .其中 $L$ 是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过 $L$ 。但他希望费用最小.

    感谢@ACの666 提供的Latex题面

    输入输出格式

    输入格式:

    第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

    输出格式:

    输出最小费用

    输入输出样例

    输入样例#1: 复制
    5 4
    3
    4
    2
    1
    4
    输出样例#1: 复制
    1
    提示
    标程仅供做题后或实在无思路时参考。
    请自觉、自律地使用该功能并请对自己的学习负责。
    如果发现恶意抄袭标程,将按照I类违反进行处理。