P3986 斐波那契数列

    • 103通过
    • 370提交
  • 题目提供者 Drench 站长团
  • 评测方式 云端评测
  • 标签
  • 难度 普及+/提高
  • 时空限制 1000ms / 512MB

题解

  • 提示:收藏到任务计划后,可在首页查看。
  • 最新讨论 显示

    推荐的相关题目 显示

    题目描述

    定义一个数列:

    $f(0) = a, f(1) = b, f(n) = f(n - 1) + f(n - 2)$

    其中 $a, b$ 均为正整数,$n \geq 2$ 。

    问有多少种 $(a, b)$ ,使得 $k$ 出现在这个数列里,且不是前两项。

    由于答案可能很大,你只需要输出答案模 $10^9 + 7$ 的结果即可。

    输入输出格式

    输入格式:

    一行一个整数 $k$ 。

    输出格式:

    一行一个数,表示答案模 $10^9 + 7$ 的结果。

    输入输出样例

    输入样例#1: 复制
    19260817
    输出样例#1: 复制
    34166325
    输入样例#2: 复制
    1000000000
    输出样例#2: 复制
    773877569

    说明

    $1 \leq k \leq 10^9$

    提示
    标程仅供做题后或实在无思路时参考。
    请自觉、自律地使用该功能并请对自己的学习负责。
    如果发现恶意抄袭标程,将按照I类违反进行处理。