U88704 min_进击的灭霸

    • 773提交
    • 246通过
    • 2.2K排名
  • 用户 ID88704
  • 用户类型普通用户
  • 注册时间 2018-02-27 09:41

博客

难易度统计

尚无评定 3
入门难度 45
普及- 94
普及/提高- 42
普及+/提高 21
提高+/省选- 31
省选/NOI- 9
NOI/NOI+/CTSC 1

统计数据非实时更新。

通过题目

[CF1060A] [CF1063A] [P2534] [CF1110A] [CF1110B] [P2084] [CF1110C] [CF1151E] [CF1190A] [CF1191A] [CF1191B] [CF1194A] [P1587] [CF1194B] [CF1194C] [P2687] [CF1194D] [CF1200A] [CF1200B] [CF1200C] [CF409F] [CF440A] [CF652B] [P2222] [CF656B] [P2207] [CF691B] [CF777A] [CF859A] [P2394] [CF8A] [P1000] [P2094] [P1001] [P1002] [P2183] [P1003] [P2500] [P1004] [P1102] [P1006] [P3448] [P1007] [P1008] [P3146] [P1009] [P1010] [P2815] [P1011] [P1012] [P1014] [P1017] [P3225] [P1018] [P1184] [P1020] [P1022] [P1025] [P3329] [P1028] [P1029] [P1030] [P1031] [P1035] [P1036] [P1040] [P1042] [P1282] [P1044] [P1046] [P1047] [P1048] [P1049] [P2535] [P1051] [P2883] [P1052] [P1066] [P1055] [P1514] [P1058] [P1059] [P1060] [P1063] [P2366] [P1064] [P1067] [P1068] [P1071] [P1075] [P1079] [P1013] [P1080] [P1082] [P1083] [P1085] [P1086] [P1089] [P1716] [P1090] [P1476] [P1091] [P1093] [P1094] [P2588] [P1096] [P1098] [P1260] [P1101] [P2765] [P1115] [P1126] [P1138] [P1141] [P1147] [P1149] [P1151] [P2756] [P1152] [P1157] [P1162] [P1176] [P1177] [P1179] [P1181] [P1190] [P1192] [P1200] [P1840] [P1216] [P1217] [P1219] [P1223] [P1226] [P1231] [P1255] [P1303] [P1306] [P1307] [P1739] [P1308] [P3339] [P1311] [P1313] [P1314] [P2405] [P1328] [P1349] [P1351] [P1113] [P1372] [P1922] [P1387] [P1402] [P1403] [P1620] [P1420] [P1421] [P1422] [P1423] [P1424] [P3390] [P1425] [P1426] [P1427] [P1428] [P1791] [P1434] [P1439] [P3522] [P1443] [P1451] [P1464] [P1478] [P3520] [P1480] [P1507] [P1534] [P1540] [P3499] [P1541] [P1548] [P1553] [P1554] [P1567] [P2649] [P1579] [P2646] [P1582] [P1583] [P1596] [P1598] [P3454] [P1601] [P1733] [P1603] [P1616] [P1618] [P1634] [P3494] [P1683] [P1706] [P1716] [P1739] [P1746] [P1803] [P2650] [P1855] [P1934] [P1865] [P3274] [P1880] [P1747] [P1908] [P1909] [P1914] [P2869] [P1932] [P1939] [P2452] [P1962] [P1965] [P1966] [P1969] [P3455] [P1970] [P1980] [P1981] [P1996] [P2653] [P2010] [P2038] [P2058] [P2084] [P2089] [P2340] [P2118] [P2141] [P1822] [P2142] [P2158] [P2197] [P2296] [P2347] [P2440] [P1586] [P2563] [P2613] [P2626] [P2669] [P2670] [P1372] [P2676] [P2740] [P2756] [P1567] [P2763] [P1788] [P2781] [P2807] [P1511] [P2871] [P3381] [P2891] [P3366] [P3367] [P1337] [P3370] [P3371] [P3372] [P3373] [P3374] [P3375] [P3376] [P3378] [P3379] [P3381] [P3382] [P3383] [P1675] [P3385] [P2353] [P3386] [P3388] [P3390] [P3742] [P2312] [P3798] [P3807] [P3811] [P3865] [P3938] [P3522] [P3951] [P3952] [P3954] [P2171] [P3955] [P4014] [P4015] [P2805] [P4016] [P2150] [P4413] [P4549] [P2553] [P4722] [P4759] [P4777] [P4779] [P2982] [P5015] [P5016] [P5019] [P5020] [P5057] [P5098] [P5461] [P5497] [P3135]
统计数据非实时更新。

签名

2019/03/9 AC 2$^7$ 祭

2019/03/10 AK 新手村

2019/07/14 AC 200 祭

2019/08/03 AC 6$^3$ 祭

$ $

一个美妙的柿子:

已知:

$F[1] = 1, F[2] = 2, F[i] = F[i-2] + f[i-1]$

可得:

$gcd(F[n], F[m]) = F[gcd(n, m)]$

$ $

再来一个美妙的柿子(即Lucas定理):

$\because(m! * (n-m)!)^{p-1} \equiv 1 \pmod p$

$\therefore \frac{n!}{m! * (n-m)!} \equiv n! * (m!) ^{p-2} * (n-m) ^ {p-2} \pmod p$

$\therefore C_{n}^{m} \equiv n! * (m!) ^{p-2} * (n-m) ^ {p-2} \pmod p$

$ $

而接下来两个柿子是Lucas定理的引理:

$x^p \equiv (x \mod p)^p \pmod p$

$C_{n}^{m} \equiv C_{\left\lfloor\frac{n}{p}\right\rfloor}^{\left\lfloor\frac{m}{p}\right\rfloor} * C_{n \mod p}^{m \mod p}$

点击查看更多...
反馈
如果你认为某条动态有问题,欢迎向洛谷反馈,以帮助更多的同学。



请具体说明理由,以增加反馈的可信度。